HELICAL RFPs: THEORY AND EXPERIMENT

by M. J. Schaffer

General Atomics

Presented at the INNOVATIVE CONFINEMENT CONCEPTS Workshop Berkeley, CA, 2000 February 22–24

The Reversed Field Pinch Has Large Magnetic Shear Generated by Large Internal Poloidal Current

The poloidal current required for reversed B cannot be driven by a toroidal electric field alone.

Poloidal current is driven by multiple nonlinearly coupled resistive MHD modes. The result is a stochastic magnetic field across most of the RFP cross section.

THESIS

- RFP confinement is limited by the magnetic fluctuations and stochasticity that sustain the reversed field.
 - ➤ Want to replace self-driven poloidal current by something more benign.
- Quasi single helical mode (QSH) states in RFP experiments and numerical simulations yield reduced stochasticity and improved confinement.
 - ➤ QSH is difficult to produce and control in a circular-section axisymmetric torus.
- The validity of the Helical RFP is already established. Confinement is improved.
- "Helical-D" generates a robust reversed magnetic field by geometry.
 - ➤ Has <u>deliberate</u> helical shaping and a <u>deliberate</u> helical equilibrium.
 - ➤ Greatly reduces need for poloidal current, but enough to eliminate instabilities?
 - > Helical-D geometry complicates engineering, like stellarator's.
- A deliberate helical equilibrium between the extremes of circular and helical–D
 might offer the best of both worlds and should be explored.

RFP Experiments Sometimes Enter a Quasi Single Helical (QSH) State

- One m = 1 helical mode
 dominates over all other m = 1
 and m = 0 (sausage) modes.
 - Sometimes the QSH state lasts for a long time, sometimes it exists only briefly.
- Plasma confinement improves during QSH phase.
- QSH mode states have been observed in:

TPE-1RM20

Extrap T1

RFX

Helical Structures Are Experimentally Observed in RFX

Tomographic reconstruction of Soft X–ray data.

High emission helix coincides with the helical magnetic island reconstructed from magnetic data.

The SXR Helical Structure in RFX is Associated with Quasi Single Helical (QSH) Magnetic Mode, but Not with Multiple Helical (MH) Modes

An Artist's Conception of the Helical Structure

Plasma Temperature Increases Inside Quasi Single Helical Mode Island

- Thomson scattering data show higher T_e inside the magnetic island during quasi single helical mode event.
- T_i increases, too (not shown).

Single Helical Mode Equilibria Were Generated Numerically for a Viscous Resistive Plasma

- Numerical 3D simulations of viscous, resistive plasmas have yielded quasi single helical mode (QSH) equilibria.
 - Cappello & Paccagnella; Finn, Nebel and Bathke; Cappello & Biscamp; Cappello et al.
- In these studies, viscosity must dominate to make QSH state appear (Pr = $\tau_{resist}/\tau_{visc} >> 1$).
 - Bifurcated system.
 - Pr < 1 yields multihelical mode solutions.
 - Pr >> 1 yields QSH solutions. Required Pr increases with Lundquist number S.
- Viscosity of experiments is unknown.

Finn, Nebel & Bathke, Phys. Fluids B <u>4</u> (1992) 1262.

THE HELICAL-D PINCH*

A Helical RFP with Large Reversal and Small Poloidal Current

*M. SCHAFFER, COMMENTS PLASMA PHYS. CONTROLLED FUSION 18 (1999) 349.

Helical-D Transform is a Geometrical Effect — a Combination of the Helical Axis and D-Shaped Cross Section

- The magnetic field from a helical current filament (representing plasma) in a helically twisted, D-shaped ideal shell has a strong reverse pitch near the boundary.
- B points straight across the D "flat" (from point 1 to 2 in the figures).
 - Shell image currents are equivalent to a helically twisted pair of currents (Fig. C).
- ullet B at the circular wall surface (from 2 to 3 in Fig. B), is \bot to the helically ignorable coordinate.
 - The line steps back in z, oppositely to the direction of the filament's current.

Helical-D Transform is Large and Broadly Distributed

- Here the plasma is modeled as a sheet of current in the helical direction at $r = r_a$ in an ideal Helical–D shell of pitch α .
 - No poloidal currents in model.
- The plot shows the pitch of numerically traced magnetic lines.

Linear Pitch =
$$P_7 \equiv$$

Advance in z

radians around magnetic axis

 The pitch and shear are well distributed throughout the volume, not localized at separatrix.

Taylor–Relaxed in Semi Circular Helical Shell Has Large Reversal and Shear, but Too Much Poloidal Current and |B| Variation on a Magnetic Surface

If the D-corners are Rounded, the Taylor-Relaxed Helical-D Equilibrium Still Has Large Transform, and |B| Variation is Reduced

Some Directions for Helical RFP Research

- The goal of helical RFP research is to make an <u>Ohmically</u> sustained reversed–PITCH helical pinch that needs little or no poloidal current.
 - Then the magnetic fluctuations should be low and confinement good.
- A cross sectional shape that is roughly circular in the plane perpendicular to the helical magnetic axis might minimize |B| variation on a magnetic surface (minimize neoclassical effects).
 - Also easier to construct.
- A helix with a somewhat smaller helical magnetic axis radius (relative to outer surface radius) is also easier to construct.
- Need to do numerical tradeoff of various physics and engineering considerations.
- Helical RFP feasibility and optimization can be studied numerically with existing codes.
 - 3-D resistive MHD codes.
 - 3-D stellarator equilibrium code, such as VMEC.

CONCLUSIONS

- Numerical simulations yield 2–D Single Helical (SH) and 3–D Quasi Single Helical mode (QSH) states.
- QSH states have appeared in RFP experiments.
 - >Stochasticity is reduced. Confinement is increased.
- QSH is difficult to make and control in a circular-section axisymmetric torus.
- The validity of the Helical RFP is already established.
 - Confinement is improved.
- "Helical-D" geometry generates a robust reversed magnetic field by axial transform.
 - ➤ Need for poloidal current is greatly reduced.
- A deliberate helical equilibrium between the extremes of circular and helical–D might offer the best of both worlds and should be explored.

